Stock Chart - Bollinger Band

Sébastien Janaud - May 25, 2015 - updated june 2017 / Samples

Bollinger Band

Stock chart are graphical representations of historical stock prices which help to determine current supply and demand forces in a stock market exchange. In stock and commodity markets trading, studying chart patterns plays a large role during technical analysis. Analysis of stock chart allows a trader to determine with more accuracy just what the current supply and demand is in a stock. JenScript does support common indicators and overlays such as ohlc, candle stick, moving average, sma, ema, wma, macd, bollinger bands, time picker, etc.

Bollinger Bands is a technical analysis tool invented by John Bollinger in the 1980s as well as a term trademarked by him in 2011. Having evolved from the concept of trading bands, Bollinger Bands and the related indicators %b and bandwidth can be used to measure the "highness" or "lowness" of the price relative to previous trades. Bollinger Bands are a volatility indicator similar to the Keltner channel.

Bollinger Bands consist of:

Typical values for N and K are 20 and 2, respectively. The default choice for the average is a simple moving average, but other types of averages can be employed as needed. Exponential moving averages is a common second choice. Usually the same period is used for both the middle band and the calculation of standard deviation.

Register plugin StockPlugin in view projection. Add Stock in plugin then register layer JenScript.StockBollingerLayer

Resource : wikipedia -  sample source code - slv historical prices - Stock Web Worker - Stock Loader

Learn : javascript stock plugin sources

Part : Part 1 - Part 2 - Part 3 - Part 4 - Part 5 - Part 6 - Part 7 - Part 8

Related : Modeling Chart Metrics

For this case study, we lookup historical stock prices at nasdaq market. For example 'slv' which is The iShares Silver Trust (the 'Trust') seeks to reflect generally the performance of the price of silver. Go in historical menu section and after re order this history we have slv historical prices split by years.

Stock item is defined by properties :

Non blocking UI process supposes we are using web work that loads asynchronously each historical data parts. we can use this stock worker that provides the data download processing and the stock loader that manages the loaded data.

Let's create function




var minor = {
		tickMarkerSize : 2,
		tickMarkerColor : 'yellow',
		tickMarkerStroke : 1
};
var median = {
	tickMarkerSize : 4,
	tickMarkerColor : '#d35400',
	tickMarkerStroke : 1.2,
	tickTextColor : '#d35400',
	tickTextFontSize : 10
};
var major = {
	tickMarkerSize : 8,
	tickMarkerColor : '#2980b9',
	tickMarkerStroke : 3,
	tickTextColor : '#2980b9',
	tickTextFontSize : 12,
	tickTextOffset : 16
};
	
function createViewStockBollingerBand(container, width, height) {
	
	var startDate = new Date(2013, 09, 01);
	var endDate = new Date(2013, 11, 01);
	
	//view
	var view = new JenScript.View({
		name : container,
		width : width,
		height : height,
		holders : 20,
		west : 100,
		east : 80,
		south : 80,
	});
	
	var projPrice = new JenScript.TimeXProjection({
		cornerRadius : 6,
		name : "proj1",
		minXDate : startDate,
		maxXDate : endDate,
		minY : 17,
		maxY : 23
	});
	view.registerProjection(projPrice);
	
	var stockPlugin1 = new JenScript.StockPlugin({
		bearishColor : 'rgba(231, 76, 60,0.8)',
		bullishColor : 'rgba(52, 152, 219,0.8)',
	});
	projPrice.registerPlugin(stockPlugin1);

	stockPlugin1.addLayer(new JenScript.CandleStickLayer({
		lowHighColor : '#1abc9c'
	}));
	stockPlugin1.addLayer(new JenScript.StockBollingerLayer({
		bandColor: '#c0392b',
		bandOpacity: 0.1,
		lineColor:'#2980b9',
		lineOpacity:0.6,
		lineWidth : 0.5
	}));

	var outline = new JenScript.DeviceOutlinePlugin({color:'#2980b9'});
	projPrice.registerPlugin(outline);


	var southMetrics1 = new JenScript.AxisMetricsTiming({
		axis : JenScript.Axis.AxisSouth,
		models : [new JenScript.HourModel({}),new JenScript.DayModel({}),new JenScript.MonthModel({})],
		minor:minor,
		median:median,
		major:major
	});
	projPrice.registerPlugin(southMetrics1);
	
	
	var westMetrics = new JenScript.AxisMetricsModeled({
		axis : JenScript.Axis.AxisWest,
		minor:minor,
		median:median,
		major:major
	});
	projPrice.registerPlugin(westMetrics);

	var translate1 = new JenScript.TranslatePlugin();
	projPrice.registerPlugin(translate1);
	var txw = new JenScript.TranslateX({
			xIndex:100,
			width : 150,
			height : 22,
			outlineStrokeColor : 'rgba(0,0,0,0)',
			buttonStrokeColor:'white',
			buttonFillColor:'black',
			buttonRolloverStrokeColor:'#2ecc71'
	});
	
	translate1.registerWidget(txw);
	translate1.select();

	var title = new JenScript.TitleLegendPlugin({
		layout : 'relative',
		part   : JenScript.ViewPart.Device,
		text   : 'Bollinger',
		fontSize : 14,
		textColor : 'black',
		xAlign : 'right',
		yAlign : 'top',
	});
	projPrice.registerPlugin(title);
	
	var __loader = new StockLoader(projPrice,[2013,2014,2015 - updated june 2017],function(year,stocks){
		stockPlugin1.setStocks(stocks);
	});	
}